Problem 1.19

Relative velocity

By relative velocity we mean velocity with respect to a specified coordinate system. (The term velocity, alone, is understood to be relative to the observer's coordinate system.)
(a) A point is observed to have velocity \mathbf{v}_{A} relative to coordinate system A. What is its velocity relative to coordinate system B, which is displaced from system A by distance \mathbf{R} ? (\mathbf{R} can change in time.)
(b) Particles a and b move in opposite directions around a circle with angular speed ω, as shown. At $t=0$ they are both at the point $\mathbf{r}=l \hat{\mathbf{j}}$, where l is the radius of the circle.

Find the velocity of a relative to b.

Solution

Part (a)
The position of a point with respect to coordinate system A is

$$
\mathbf{x}_{A}=\mathbf{R}+\mathbf{x}_{B} .
$$

Differentiate both sides with respect to t.

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}_{A} & =\frac{d}{d t} \mathbf{R}+\frac{d}{d t} \mathbf{x}_{B} \\
\mathbf{v}_{A} & =\frac{d \mathbf{R}}{d t}+\mathbf{v}_{B}
\end{aligned}
$$

Therefore,

$$
\mathbf{v}_{B}=\mathbf{v}_{A}-\frac{d \mathbf{R}}{d t}
$$

Figure 1: This figure illustrates the position of a point with respect to two coordinate systems, A and B, the latter being displaced from the former by $\mathbf{R}=\mathbf{R}(t)$.

Part (b)

The aim here is to apply the result of part (a). We want to find the velocity of particle a from the perspective of particle b, so coordinate system B is set up where particle b is. Coordinate system A is set up at the center of the circle for convenience. Consequently, \mathbf{R} is the position vector of particle b with respect to coordinate system A, and \mathbf{v}_{A} is the velocity of particle a with respect to coordinate system A.

$$
\begin{aligned}
\mathbf{r}_{a}(t) & =\langle l \sin \omega t, l \cos \omega t\rangle \\
\mathbf{R}(t) & =\langle-l \sin \omega t, l \cos \omega t\rangle
\end{aligned}
$$

Therefore, the velocity of particle a from the perspective of particle b is

$$
\mathbf{v}_{B}=\mathbf{v}_{A}-\frac{d \mathbf{R}}{d t}=\frac{d \mathbf{r}_{a}}{d t}-\frac{d \mathbf{R}}{d t}=\langle l \omega \cos \omega t,-l \omega \sin \omega t\rangle-\langle-l \omega \cos \omega t,-l \omega \sin \omega t\rangle=\langle 2 l \omega \cos \omega t, 0\rangle .
$$

